Fluorescence-Enabled Electrochemical Microscopy with Dihydroresorufin as a Fluorogenic Indicator
نویسندگان
چکیده
Recently, we introduced a new electrochemical imaging technique called fluorescence-enabled electrochemical microscopy (FFEM). The central idea of FEEM is that a closed bipolar electrode is utilized to electrically couple a redox reaction of interest to a complementary fluorogenic reaction converting an electrochemical signal into a fluorescent signal. This simple strategy enables one to use fluorescence microscopy to observe conventional electrochemical processes on very large electrochemical arrays. The initial demonstration of FEEM focused on the use of a specific fluorogenic indicator, resazurin, which is reduced to generate highly fluorescent resorufin. The use of resazurin has enabled the study of analyte oxidation reactions, such as the oxidation of dopamine and H2O2. In this report, we extend the capability of FEEM to the study of cathodic reactions using a new fluorogenic indicator, dihydroresorufin. Dihydroresorufin is a nonfluorescent molecule, which can be electrochemically oxidized to generate resorufin. The use of dihydroresorufin has enabled us to study a series of reducible analyte species including Fe(CN)6(3-) and Ru(NH3)6(3+). Here we demonstrate the correlation between the simultaneously recorded fluorescence intensity of resorufin and electrochemical oxidation current during potential sweep experiments. FEEM is used to quantitatively detect the reduction of ferricyanide down to a concentration of approximately 100 μM on a 25 μm ultramicroelectrode. We also demonstrate that dihydroresorufin, as a fluorogenic indicator, gives an improved temporal response and significantly decreases diffusional broadening of the signal in FEEM as compared to resazurin.
منابع مشابه
Self-induced redox cycling coupled luminescence on nanopore recessed disk-multiscale bipolar electrodes† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c5sc00433k Click here for additional data file.
We present a new configuration for coupling fluorescencemicroscopy and voltammetry using self-induced redox cycling for ultrasensitive electrochemical measurements. An array of nanopores, each supporting a recessed disk electrode separated by 100 nm in depth from a planar multiscale bipolar top electrode, was fabricated using multilayer deposition, nanosphere lithography, and reactive-ion etchi...
متن کاملA stable nonfluorescent derivative of resorufin for the fluorometric determination of trace hydrogen peroxide: applications in detecting the activity of phagocyte NADPH oxidase and other oxidases.
The enzymatic determination of hydrogen peroxide can be accomplished with high sensitivity and specificity using N-acetyl-3, 7-dihydroxyphenoxazine (Amplex Red), a highly sensitive and chemically stable fluorogenic probe for the enzymatic determination of H2O2. Enzyme-catalyzed oxidation of Amplex Red, which is a colorless and nonfluorescent derivative of dihydroresorufin, produces highly fluor...
متن کاملPlasmonic structured illumination microscopy.
We propose a super resolution imaging technique called plasmonic structured illumination microscopy (PSIM), which combines the structured illumination microscopy technique with the tunable surface plasmon interference. Because of the high-resolution enabled by using surface plasmon interference as an illumination source, PSIM possesses higher image resolving power compared with conventional str...
متن کاملGreen- to far-red-emitting fluorogenic tetrazine probes - synthetic access and no-wash protein imaging inside living cells.
Fluorogenic probes for bioorthogonal labeling chemistry are highly beneficial to reduce background signal in fluorescence microscopy imaging. 1,2,4,5-Tetrazines are known substrates for the bioorthogonal inverse electron demand Diels-Alder reaction (DAinv) and tetrazine substituted fluorophores can exhibit fluorogenic properties. Herein, we report the synthesis of a palette of novel fluorogenic...
متن کاملIon Permeability of the Nuclear Pore Complex and Ion-Induced Macromolecular Permeation as Studied by Scanning Electrochemical and Fluorescence Microscopy
Efficient delivery of therapeutic macromolecules and nanomaterials into the nucleus is imperative for gene therapy and nanomedicine. Nucleocytoplasmic molecular transport, however, is tightly regulated by the nuclear pore complex (NPC) with the hydrophobic transport barriers based on phenylalanine and glycine repeats. Herein, we apply scanning electrochemical microscopy (SECM) to quantitatively...
متن کامل